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Results of a study of variational inequalities appearing in dynamic problems of the theory of elastic-ideally 

plastic Prandtl-Reuss flow are given. The concept of a generalized solution is formulated for the 

general-type inequality and is used to construct the complete system of relations for a strong discontinuity. 

A priori estimates are obtained which make it possible to prove the uniqueness and continuous dependence 

“in the small” on time of the solutions of the Cauchy problem and initial-boundary value problems with 

dissipative boundary conditions, as well as the estimates of the nearness of the solutions of the variational 

inequality and of the system of equations with a small parameter describing the elasto-viscoplastic 

deformation of the bodies. The problem of the propagation of plane waves in an elastoplastic half-space 

with initial stresses is used as an example to illustrate the difference between the discontinuous solutions 

with the Mises yield condition and with the Tresca-St Venant consition in the theory of flows. 

1. HYPERBOLIC VARIATIONAL INEQUALITIES 

THE MODEL of an elastoplastic Prandtl-Reuss body consists, in the geometrically linear approxima- 
tion, of the equations of motion, Hooke’s Law, and defining relations of irreversible strain, which 
can be written in the form of the principle of the maximum rate of energy dissipation [l]: 

p&, t = uij,j? %j” = %jkl(Jkl, t (1.1) 

(aij* - uij) eijP < 0 

l/2 (4, j + uj,i) = %j” + eijP (1.2) 

Here p is the density, vi is the velocity vector in a Cartesian system of coordinates x1, x2, x3, avkl is 
the tensor of the elastic compliance moduli possessing the properties of symmetry and positive 

definiteness and eiio, ei/’ are the elastic and plastic components of the strain rate tensor. 
The maximum (1.2) holds for any variation of the stress tensor Uij subjected to the following 

constraint: 

f&Q*)\< i 

where f is the convex yield function of the material. 
The system of equations (1. l), (1.2) is equivalent to the inequality 

(1.3) 
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(Vi* - vi) (P”i, t - uij, j) + (oil* - adj) (%jh.l(Jkl.t - vi, j) > O (1.4) 

in which the variation of the velocity vector is arbitrary. 
Certain particular models of dynamic strain based on the theory of flows, for example, the models 

of elastoplastic plates and Timoshenko-type shells, admit of a similar formulation. A variational 
inequality of the most general type can be written in matrix form as follows: 

+* - u) (L (u> - g) 2 0, 4 u* E K 

L (u> = Au, t - i B’u,~ - Qu 
#i--f 

(1 S) 

Here g = g(t, x) is an m-dimensional vector function defined in the domain of the solution of the 
problem GCZ?“+‘(t,x), A =A(t,x) and BS= B”(t, X) are symmetrical (m x m) matrices and the 
matrix A is strictly positive definite, Q = Q (t, x) is a (m x m) matrix, K = K(t, x) is a closed convex 
set of admissible states and U* is any element of K. The differential operator L is Friedrichs- 
hyperbolic [2]. 

In the case of the Prandtl-Reuss model, the vector of unknown functions u = u(t, X) consists of 
velocities and stresses and the symmetric matrices A and B” contain the coefficients appearing in the 
inequality (1.4) next to the derivatives with respect to time and the coordinates. The vector g and 
matrix Q are both equal to zero, and the set K is determined by the constraint (1.3). 

Figure 1 shows the geometrical interpretation of the variational inequality in the space R”(u). By 
virtue of inequality (1 S), the angle between the vector L (u} - g and any admissible variation of the 
solution is acute, therefore 

L(u) - g = 0 (1.6) 

if u is an internal point of the set K, and the vector L&j-g is directed along the inner normal to the 
boundary of K if u lies on the boundary. In the case of a smooth boundary inequality (1.5) will be 
equivalent to the system of equations 

L(u) = g- y~~~~~, f< 1 (1.7) 

in which f(t, X, U) = min { r>O: u/rE K} is a convex function positively homogeneous in u of the 
Minkovsky set K, y = r(t, X) is a non-negative multiplier which is equal to zero when f(u) < 1. 
When f(u) = 1, the multiplier y can be found from (1.7), taking into account Euler’s theorem for 
homogeneous functions 

Y = u(g-LL(u)) (1.8) 
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For the model (l.l)-(1.3), the system of quasilinear equations (1.7), (1.8) represents the 
formulation of relations of dynamic strain, based on the associated flow law. 

2. GENERALIZED SOLUTIONS 

When the matrices representing the coefficients of the operator L are sufficiently smooth, the 
following inequality holds for any continuously differentiable solution of the variational inequality 
(1.5): 

lL*J5 (u) > + (uAu),~-+ &B’LL),~uRu+(u*-u)g (2.1) 
s-1 

2R=2Q”+ A,t- iilB:w 2Q” = Q + Q’ 

where R is a symmetric matrix, and a prime denotes the transposition operation. Multiplying both 
sides of (2.1) by the function x = x (t, X) EC”(g), non-negative and finite in G, and integrating over 
the area G using Green’s formula, we obtain 

s,s’u*- ~/2)(+4),t + i (XBak-~Qo) udwcdt> 
s=l 

(2.2) 

In turn, transforming the integral in inequality (2.2) in reverse order and taking into account the 
arbitrariness of x, we can obtain the inequalities (2.1) and (1.5). 

The integral inequality (2.2) determines, in a natural manner, the class of generalized solutions of 
(1.5) containing non-smooth functions. In particular, the class contains all limits of the sequences of 
classical solutions converging on the norm of the space L(2G). This assertion can be proved by 
passage to the limit in inequality (2.2) written out for the elements of a single sequence. 

Further, let u = u (t, x) be a generalized solution with a strong discontinuity, satisfying inequality 
(2.2) for all possible admissible u * E C1 (G), and continuously differentiable in the region G except 
at the hypersurface Sc on which it has a first-order discontinuity. The hypersurface S, divides G into 
two subregions, G + and G-. Transforming the integrals appearing in (2.2) over each of these 
subregions, we can obtain 

D (t, x, c, v) = CA + 2 v,B’ 
84 

Here the square brackets denote a jump in the value of the function at the discontinuity, u, is the 
vector normal to the front of the strong discontinuity, the latter representing the intersection of S, 
by the hyperplane t = const, c 20 is the velocity of propam of the front in the direction of the 
normal. The unique (n + l)-dimensional vector (-c, v)ldl + c2 is the outer normal to S, with 
respect to G +. 

The inequality (2.3) yields a condition which holds at the points of S,, and which can be 
represented, by virtue of the symmetry of the matrix D, as follows: 
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(u* - u”) D [ul > 0, u*, u* E K, U0 = (U’ + u-)/2 (2.4) 

where u * are one-sided limits of the solution on &, . 
Condition (2.4) has a geometrical interpretation analogous to that of the variational inequality 

(1.5). If the middle of the segment [u+, u-1 C K lies strictly within K, then D [u] = 0. If on the other 
hand u” is a boundary point, then by virtue of the convex character K, it is only when the whole 
segment lies on the boundary that the direction of the vector D [u] coincides with the direction of its 
inner normal. When the boundary of K is smooth, we have the following relation: 

D Iul = -_roi3f (u”) / du (2.5) 

( 
0, f ho) < 1 

Yo = - [uDu]/2 > 0, f (u”) = 1 

The problem of constructing discontinuous solutions in the theory of elastoplastic Prandtl-Reuss flow was 
first studied by Mandel in [3], who produced an erroneous argument concerning the non-uniqueness of the 
description of the surfaces of the velocity and stress discontinuities within the framework of this theory. A 
complete system of equations of strong discontinuity was given for the models of elastoideally plastic strain 
and of the strain with linear isotropic and translational hardening in [4], using the concept of maximum energy 
dissipation during passage across the discontinuity as the basis of the derivation. The matrix form of this system 
for elasto-ideally plastic media is identical with (2.5). 

The impossibility of generalizing the quasilinear Prandtl-Reuss equations in the form of a complete system of 
integral conservation laws was shown in [5]. Thus the attempt to obtain relations at the discontinuity (1.7), 
(1.8) analogous to the models of ideal media [6] was unsuccessful. The formulation (1.5) yields a solution of the 
problem without introducing any additional concepts. 

3. A PRIORI ESTIMATES OF THE SOLUTIONS 

Let u and u ’ be two, sufficiently smooth solutions of the variational inequality (1 S), correspond- 
ing to various continuous right-hand sides of g and g ‘. Putting u * = u ’ in (1.5) and u * = u in the 
inequality written for the solution u ‘, we can establish that 

(u’ - u) (L (u’ - u> - g’ + g) > 0 (3.1) 

To obtain a priori estimates analogous to the estimates of the systems of linear hyperbolic 
equations, we construct a special region of the truncated-cone type G = {(t, x): to 6 t < tl , x E i2 (t)} , 
whose conical part of the surface S, : cp (t, x) = 0 (Fig. 2) satisfies the Hamilton-Jacobi condition 

‘P,t + H (k x, acp/az) > 0 (3.2) 

0 ,X 

FIG. 2. 
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where c = H(t, X, v) is the smallest of m real roots of the characteristic equation for the operator 
L: detD(c, u) = 0. The procedure for constructing such regions is described, e.g., in [2]. 

Integrating inequality (3.1) over the area G we obtain 

-s(“‘-uJD( s u’ - u) da/ Jf/1 + ca < 

< s,s (u’ - u) {R (u’ - u) + g’ - gl da-J,dt (3.3) 

where S is the boundary of G and the coefficients c and v, appearing in the expression for the matrix 
D have the same meaning as before, but with reference to the hyperplane S. Condition (3.2) ensures 
that conditions of non-negative definiteness of the matrix D(c, v) hold at the points S,, therefore 
from (3.3), taking the Cauchy inequality into account, we obtain the expression 

II u’ - u II” @r) Q II u’ - ul]“(t,)+ 2a[]]u’-rJ]]Qt+ 
t. 

t1 

+28m;xIlg’--gllS llu’--ulldt, llulla= 1 uAud@, (3.4) 
1, QV) 

Here (Ju]I is the energetic norm, and CY and l3 are constants depending on the elements of the 
matrices A and R, respectively. 

This, in turn, after taking tr , to to the intermediate instant of time t, yields a differential 
inequality, which enables us to obtain the following estimate: 

II ZJ’ - u II 01) < II u’ - u II (to) ew W @I - 44 + 

+~~llg’-gII(t)exp(a(tl--t))dt (3.5) 
t. 

Using estimate (3.5) we can prove the uniqueness in G and the continuous dependence on the 
initial data and the right-hand side of the solution of the Cauchy problem: u It+ = 4. It also implies 
the boundedness of the domain of dependence (influence) of solutions of variational inequality 
(1.5). 

A similar estimate can be obtained in the neighbourhood of the fixed hypersurface S, with 
dissipative boundary conditions specified on it. When the conditions are satisfied for the vector 
functions u and u ‘, then the validity of the following inequality is ensured: 

@ - *=I 6 
u) 5 v B”(u’-u)<O (3.6) 

where u, is the normal to S, , external relative to the domain of solution of the problem. In this case 
it is sufficient to take, as G, the part of the truncated cone separated by S, . 

The assumption that the solutions used in deriving the estimates are smooth can be weakened. 
Let there exist in G a hypersurface of strong discontinuities of solutions Sc. Then, by virtue of the 
condition at the discontinuity (2.4) taken at u* = (u ‘)’ and analogous condition in which u and u ’ 
are interchanged, the following inequality holds: 

[(u’ - u) D (u’ - u)l < 0 (3.7) 

Integrating (3.1) and using Green’s formula we can obtain an inequality which differs from (3.3) 
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in that it has an additional term, the integrand in which is identical with (3.7). From this inequality, 
(3.3) again follows, and then (3.5). 

Let T(U) = 7~ (t, x, U) be the operator of projection onto the set K in the Euclidean metric, u be a 
smooth solution of variational inequality (1.5), and U’ a solution of the following system of 
semilinear equations with a small parameter E > 0: 

L (24’) = g - {u’ - n (U’)}l(2&) 

According to the definition of the projection operator we have 

{U* - rc (U’)}(U’ - n (U’)} < 0, u* E K 

therefore 

(3.8) 

(U* - u’) (L (u’) - g) > ]I u’ - n (u’) ]1,2/(2&) (3.9) 

Integrating the inequality obtained as a result of combining the inequality (3.9) taken at u * = U, 
and (1.5) at u * = n (u ‘), over the area of the truncated cone type, we can establish that 

exp (2at)d (11 u’ - u II2 exp (-2~8 t)}ldt + )I u’ - n (u’)llo2/E < 

< 2 II u’ - n Wlla II L (4 - g II0 

where ]]u]]c is the norm of the space L2 (G). After using the s-inequality and integrating over t, this 
yields the following estimate: 

II u’ - u II2 (11) < II u’ - u 11” (to) e=p Ih (tl - 0 + 

+e~IlL<u)-gIlol(t)exp{~(t,--t)}dt 
t. 

(3.10) 

which shows that when the initial data are-the same, the norm of the difference between the 
solutions (1.5) and (34, is of the order of VE . 

The assertion of the convergence of the solutions of the system of equations (3.8) as E--+O, 
following from (3. lo), can be generalized. If u ’ (t, x, E) is a family of solutions converging in L2(G) 
to the vector function u(t, x) (not necessarily smooth), then u will be the generalized solution of the 
variational inequality (1.5). 

Indeed, since (1.5) follows from (3.9), the integral inequality will hold for u’, as well as for the 
limit function. Moreover, we have the identity 

ss {n (IA’) - u’} q&o, dt = 28 1s (U’L’ (9) - g$) da, dt 
c G 

(3.11) 

where L’ is an operator formally conjugated to L and + = +(t, x) is a vector function finite in G and 
belonging to the class C’ (G). Passage to the limit in this identity, taking the arbitrary form of $ into 
account, yields u = n(u) E K. 

Earlier the problems of the solvability of the system of equations of elastoplastic flow, i.e. of the 
system (3.8) for the model (l.l)-(1.3), and the problems of convergence over the viscosity 
parameter E were discussed in [l]. A generalization of the theorem of existence in the theory of 
elastoplastic flow, which was proved in [l] under very narrow conditions, was given in [6]. However, 
the concept of a generalized solution formulated in these papers does admit of strong discon- 
tinuities. 

It was noted in a number of papers (for example, in [8]), that the discontinuous solution for the 
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Prandtl-Reuss model should naturally be regarded as the limit, with respect to the viscosity 
parameter, of the sequence of solutions of the system of equations of elasto-viscoplastic flow. The 
assertion proved here establishes the equivalence of such a concept to the concept of a generalized 
solution formulated in Sec. 2. 

4. ELASTOPLASTIC WAVES IN A HALF-SPACE 

We will construct, in closed form, the discontinuous solution of the problem of the propagation of 
plane stress waves produced by sudden application of a constant normal pressure p > 0 to the surface 
of the half-space x t 20, previously compressed in a transverse direction by the stress q. In the 
present problem the system of coordinates coincides with the principal directions of the stress 
tensor. The relations connecting the junps in unknown functions on the surface of the discontinuity, 
which are necessary for the solution, yield the variational inequality (2.4): 

(4.1) 

Here and henceforth u = UiSii/3 is the mean (hydrostatic) stress, 6, is the Kronecker delta, and A, 
p, and rs are the Lame parameters of the material and yield point under pure shear. 

Depending on the magnitude of the stresses p and q, the solution, according to the theory of 
elastoplastic flow with the Tresca-St Venant yield condition, 

f = max 1 cri - uj ]/(2’6,) 
i,/ 

has one, two or three surfaces of discontinuity (Fig. 3). The first one is an elastic precursor moving 
with the velocity of longitudinal waves cp = d[(X + 2p)/p]. Before the front of the precursor we 
have 

(Jr = us -= 0, us = -q (0 < q < 22,) (4.2) 

When pSp* = (A +~P)T,/P, we have the following uniform stress state behind the front and up 
to the boundary of the half-space: 

a1 = -p, up = --hP/(h + W, a9 = ‘J, - q (4.3) 

When p* <p <p* = p* + (A + 2k)q/p,, a discontinuity appears corresponding to the state of 
incomplete plasticity, and in this case the segment [uii+, oi-] in the stress space belongs wholly to the 

0 X 

FIG. 3. 
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edge of a yield prism. The rate of displacement of the discontinuity is equal to c, = v[(h + k)/p]. In 
region 1 before the front we have 

crl = -p** a* = --h’t,ll.l, UQ = a, - q 

and behind the front and up to the boundary we have 

(4.4) 

(Jr = -p, u, = -_p + 25, (JJ = h (‘t., - p)@ + cl) - q (4.5) 

Finally, in the case when p>p* we have a three-wave configuration. The third discontinuity 
behind whose front we have the state of full plasticity, has a velocity cf = l/[(h + 243)/p]. In region 
1 the stresses are given, as before, by formulas (4.4). In region 2 

and in region 3 
cr1= -p *, (32 = u3, =- -(A + p)q/p - lbT,//A (4.6) 

u1= -p, uz = UJQ = -p + 27, (4-V 

According to the assertion proved above, the solution of the problem given here is unique in the 
class of piecewise discontinuous functions. The unique solution of this problem in the theory of 
flows with Mises condition 

where a, is the tensile yield point, has a single discontinuit 
irrespective of the value of p. When p Sp.+’ = (X + 2p)(q + 

;, nayly the elastic precursor, ~ 
4uS - 3q )/(4l.~), the stress state m 

the half-space is given by formulas (4.2) and (4.3). For largep we have, in region 1 (Fig. 4) behind 
the front of the precursor, 

[Jl = -p*‘, (3.J = -Q,‘l(h + 2P), u3 = (72 - Q (4.8) 

A self-similar solution depending on the variable c = x/t is adjacent continuously to state 1, and 
the following system of ordinary differential equations can be obtained from (1.7), (1.8) for 
determining this solution: 

(PC2 - h - 2l+krJdc = y’ (a, - 0) 

p&43& - Jd$/& = y’ (cri - a), (i = 2, 3) 

y’ = -3pcp (a, - a) dc@ > 0 

The surface of the join of these solutions propagates at the rate of c* = VC~* + Fq2/(puS2). In re- 
gion 2 the expression for the mkan stress has the form 

30-a ~u,lu-J+ 3h+2~ 
a+2p p*'--Q (4.9) 
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and the principal stresses are: 

Here 

Q 
l+cp,(c) 

= 1-Q(C) ’ 
q,=( $$,‘“, fw-( c;¶-:;, )’ 

The rate of motion of the boundary of the region 2c = c * is a root of the equation 

o1 (c) + p_ = 0 (4.11) 

Such a root exists when p >p* in the interval (c, , q), since the function on the left-hand side of 
(4.11) changes its sign. In region 3 we have a homogeneous stress state determined by formulas (4.9) 
and (4.10) when c = c *. 

In the limit, as q+O, the relation c, = c* = cf holds. Thus, in the case of q = 0, a second surface 
of strong discontinuity appears, moving at a rate of cf. The corresponding stresses are piecewise- 
constant functions. 

1. 
2. 
3. 

4. 

5. 

6. 
7. 

8. 

The solutions given here can be used as tests when constructing numerical methods. 
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